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Abstract—This paper outlines the motivation for QEC, begin-
ning with Richard Feynman’s observation that simulating quan-
tum systems requires machines governed by quantum mechanics.
We review Shor’s 9-qubit code, which protects against arbitrary
single-qubit errors, and extend the discussion to fault-tolerant
quantum computation (FTQC), where circuits are constructed to
minimize error propagation. Early experimental demonstrations,
including the 1998 NMR-based implementation by David Cory
and collaborators, are discussed. Finally, we examine topological
codes, as a viable framework for building robust quantum
systems. These developments follow the evolution of QEC from
theoretical constructs to experimental proof-of-concept and to-
ward scalable, fault-tolerant quantum computation.

Index Terms—Qubit, Decoherence, Superposition, Entangle-
ment, QEC

I. INTRODUCTION

Quantum computers have the potential to solve certain
problems exponentially faster than classical computers [1]–[3],
including applications in cryptography, finance, and optimiza-
tion where no efficient classical solutions are currently known
[4]. This potential was first articulated by Richard Feynman
in 1981 [5], who noted that simulating quantum systems
on classical machines is inherently inefficient. He proposed
that accurate modeling of quantum phenomena would require
machines that themselves operate under the laws of quantum
mechanics. An idea that laid the groundwork for quantum
computing.

However, the realization of practical quantum computers
faces major challenges. Quantum information is fragile, and
physical qubits are highly sensitive environmental interactions,
leading to decoherence [6], bit-flip [7], and phase-flip errors
during computation [8], [9]. Accumulating such errors across
many operations impedes the development of reliable, large-
scale quantum systems.

To address these challenges, the field of quantum error
correction (QEC) was developed. Inspired by classical error
correction but constrained by the no-cloning theorem and
quantum measurement collapse, QEC provides a way to en-
code logical qubits into entangled states of multiple physical
qubits. This approach allows for identification and correction
of errors without directly measuring the quantum information
itself. As such, QEC is essential for preserving quantum data
throughout extended computations.

This paper reviews foundational concepts in QEC, be-
ginning with Shor’s 9-qubit code, which demonstrates that
arbitrary single-qubit errors can be corrected. We then examine

the principles of fault-tolerant quantum computation, where
circuits are designed to prevent the amplification of errors.
Finally, we explore topological codes which offer a practical
route to scalable, fault-tolerant quantum computing.

II. INFORMATION THEORY BACKGROUND

For any computational task, classical or quantum, the ability
to store and manipulate information is essential. In classical
computing, information is stored using bits, which represent
a binary 0 or 1 based on the absence or presence of electrical
power. In contrast, quantum computing uses qubits, which
can exist in a superposition of states. This means a qubit can
represent both 0 and 1 simultaneously, until it is measured.
These unmeasured states are denoted as |0⟩ and |1⟩.

When a qubit is measured in the computational basis, its
state collapses into either 0 or 1, and this result becomes
permanent. A similar principle applies when measuring in the
Hadamard basis, where a qubit collapses in either + or -
. A qubit state in computational basis |0⟩ and |1⟩ can be
transformed into the Hadamard basis (|+⟩ and |−⟩) using a
Hadamard gate. This behavior limits when and how informa-
tion can be accessed from quantum systems.

Additionally, due to the no-cloning theorem, qubits cannot
be copied. This restriction complicates strategies such as
redundancy and direct error checking, which are commonly
used in classical computing.

Quantum systems also exhibit entanglement, where two
or more qubits become linked such that the state of one
instantly affects the state of the other, regardless of distance. In
this paper, entanglement is introduced using the CNOT gate.
Entanglement enables complex correlations and plays a critical
role in quantum algorithms and QEC.

However, these very features, superposition and entangle-
ment, also make quantum states highly fragile. They are
easily disturbed by interactions with the environment, resulting
in errors such as bit-flips, phase-flips, or a combination.
Overcoming these issues is the primary goal of QEC.

III. CLASSICAL ERROR CORRECTION

In classic computing, error correction techniques have been
well-established for decades [10], largely due to the discrete
and resilient nature of binary bits.

One of the simplest and most fundamental methods is the
use of repetition codes [11], which also serves as a conceptual
basis for quantum error correction. In this approach, a bit is



repeated multiple times to build redundancy. If one copy is
affected by noise, the system can recover the original value
by using a majority vote among the repeated bits.

This concept is easily understandable, consider a hospital
with a backup power system. If the main power supply
fails, a backup generator turns on to restore power. Similarly,
repetition codes act as safeguards, multiple backups ensure the
correct value is retained even if one is corrupted.

For example, a 3-bit repetition code encodes a single bit as:

0 7→ 000

1 7→ 111

If no errors occur, the correct value is unambiguous. However,
if one bit is flipped due to noise, the system can correct the
error using a majority function:

majority(a, b, c)

This function determines the correct value by taking the most
common among the three bits. However, if two or more errors
occur, the majority vote may yield an incorrect result. The
reliability of this method can be improved by increasing the
number of repetitions, five, seven or more, hence reducing the
overall error probability.

Repetition codes exemplify a basic yet effective form of
classical error correction, capable of detecting and correcting
small-scale errors at the bit level.

IV. QUANTUM ERROR CORRECTION

Traditional error correction methods are not directly applica-
ble to quantum systems due to fundamental constraints like the
no-cloning theorem and the collapse of quantum states upon
measurement. QEC overcomes these challenges by encoding
logical qubits into entangled states of multiple physical qubits
and employing syndrome measurements to identify and correct
errors without measuring the encoded quantum information
directly.

This section introduces key quantum error correction tech-
niques, focusing on foundational codes and concepts.

A. The 3-Qubit Bit-Flip Code

Originally discovered by Asher Peres in 1985 [12], the 3-
qubit bit-flip code was developed to simulate classical compu-
tations on quantum systems in a way that is robust to noise.
Although Peres is not widely credited in early literature, Peter
Shor acknowledged his contribution in a 2022 overview of
quantum computation [13].

1) Encoding Qubits: The 3-qubit bit-flip code addresses the
no-cloning limitation by entangling two additional qubits with
an original qubit to form a single logical qubit. The encod-
ing process creates redundancy without duplicating quantum
information. The corresponding circuit is shown in Figure 1.

|q⟩

|0⟩

|0⟩

Fig. 1. The 3-qubit code encoding circuit.

Syndrome Error
0 no error
1 error on qubit

TABLE I

2) Syndrome Measurement: To circumvent the issue of
measurement-induced collapse, QEC uses syndrome measure-
ments to detect errors indirectly. These are implemented using
an ancillary qubit, which interacts with the data qubits through
a series of controlled gates (see Figure 2). The ancilla is then
measured, yielding either a 0 or 1, which corresponds to an
eigenvalue (+1 or -1) of a stabilizer operator.

Table I shows the possible outcomes. These measurements
reveal whether an error has occurred—enabling correction
without disturbing the superposition of the logical qubit.

|q1⟩

|0⟩

Fig. 2. A simple syndrome measurement on two qubits.

3) Bit-flip Errors: To detect bit-flip errors, syndrome mea-
surements are used after encoding, as depicted in Figure 3.
The procedure involves two parity checks: (1) Between the
first and second qubits and (2) Between the second and third
qubit. These checks determine whether the respective qubits
are in agreement. Discrepancies indicate a bit-flip error. Table
II lists all possible measurement outcomes.

|q1⟩

|q2⟩

|q3⟩

|0⟩

|0⟩

Fig. 3. A circuit to detect a bit-flip error.

4) Phase-Flip Errors: Phase-flip errors are addressed using
a variation of the repetition code, applied in the Hadamard
basis. Since a phase flip in this basis is equivalent to a bit flip in
the computational basis, the original state is first transformed
using Hadamard gates, converting |0⟩ and |1⟩ into |+⟩ and |−⟩,
respectively (see Section II). The encoded circuit is shown in
Figure 4.



Syndrome Error
00 no error
01 error on 3rd qubit
10 error on 1st qubit
11 error on 2nd qubit

TABLE II

|q⟩ H

|0⟩ H

|0⟩ H

Fig. 4. The 3-qubit code encoding circuit using Hadamard gates.

To perform syndrome measurements, another Hadamard
gate is applied before the parity checks, returning the state to
the computational basis. The full phase-flip detection circuit
is shown in Figure 5.

|q1⟩

|q2⟩

|q3⟩

|+⟩ H

|+⟩ H

Fig. 5. The modified phase-flip detection circuit.

5) Arbitrary Errors: While bit-flip and phase-flip errors
are common, most quantum errors can be decomposed into
combinations of X (bit-flip) and Z (phase-flip) operations. This
decomposition allows for the use of simple codes to address
more complex error scenarios. For further detail, see IBM’s
quantum computing course [14].

B. Shor’s 9-Qubit Code

Proposed by Peter Shor in 1995 [15], the 9-qubit code
was the first fully QEC code. It corrects arbitrary single-
qubit errors by combining two layers of redundancy: one
for correcting phase-flip errors and another for bit-flip errors.
The code integrates concepts from two types of 3-qubit codes
introduced earlier.

The encoding begins by creating a logical qubit that is
resistant to phase-flip errors through the use of superpositions
of phase-stabilized states. Each of these states is then further
encoded using the 3-qubit repetition code to guard against bit-
flip errors. The result is a single logical qubit distributed across
nine physical qubits.

Parity checks between specific subsets of qubits enable
identification of both the location and the type of error,

allowing for correction without collapsing the logical quantum
state. The encoding circuit is shown in Figure 6.
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Fig. 6. The 9-Qubit Shor Code encoding.

C. First Experimental Realization of QEC

In 1998, David Cory and colleagues demonstrated one
of the first experimental implementations of quantum error
correction using a liquid-state nuclear magnetic resonance
(NMR) system [16]. Published in Physical Review Letters,
their work presented a proof-of-concept implementation of a
3-qubit bit-flip code, initially introduced by Andrew Steane
[17], which itself builds on Shor’s 9-qubit code.

The experiment encoded one logical qubit across three
nuclear spins and applied correction routines using unitary
operations and measurement techniques suitable for NMR.
Notably, the team was able to demonstrate encoding, syndrome
extraction, and state recovery, all within the coherence time of
the system.

This experiment marked a key step in demonstrating that
quantum error correction could be physically implemented,
even in small-scale systems. It bridged the gap between theo-
retical QEC and practical, hardware-level quantum information
protection.

D. Fault-Tolerant Quantum Computing

QEC alone does not guarantee reliable quantum computa-
tion. The circuits used for detecting and correcting errors are
also subject to faults. This leads to the broader framework of
fault-tolerant quantum computation (FTQC) [18], which en-
ables quantum information to be processed reliably, even when
individual components (gates, qubits, and measurements) are
imperfect, as long as the error rate remains below a certain
threshold.

In FTQC, logical qubits are encoded with QEC codes in
such a way that operations can be performed without allowing
errors to spread uncontrollably. A central concept in this
framework is the use of transversal gates, which apply the
same operation across corresponding qubits in a code block.
For instance, a logical CNOT gate can be implemented by



performing physical CNOT gates between each pair of qubits
in two encoded blocks. This structure helps prevent a single
fault from affecting multiple logical qubits.

The quantum threshold theorem [19] provides the theo-
retical basis for FTQC. It states that, provided the physical
error rate is below a critical value, typically around 1%,
arbitrarily long quantum computations can be performed with
high reliability.

An example of FTQC in practice is offered by Microsoft and
Quantinuum. Their team implemented the tesseract code on
Quantinuum’s trapped-ion quantum hardware [20]. This code
protects four logical qubits using 16 physical qubits and main-
tains coherence through five rounds of active error correction.
Such demonstrations bring the field closer to realizing scalable,
fault-tolerant quantum computation.

E. Topological Codes

First introduced by Alexei Kitaev in 1997, topological
quantum codes [21], notably the surface code [22], are cur-
rently among the most promising approaches for scalable
quantum error correction. These codes arrange physical qubits
in a two-dimensional lattice where only local interactions are
required, making them well-suited to hardware platforms such
as superconducting circuits.

Logical qubits are encoded in the global topological features
of the lattice, while errors are detected through stabilizer
measurements performed on small, local groups of qubits.
This structure allows topological codes to tolerate noise ef-
fectively. The surface code, in particular, has a high error
threshold (around 1%) and supports fault-tolerant operations
using techniques such as lattice surgery and braiding. It has
been implemented experimentally by companies like Google
and IBM [23], [24].

Topological codes are defined by their use of non-local
logical information. In the surface code, physical qubits are
laid out in a grid, and error correction is performed through
repeated measurements of X- and Z-type stabilizers. These
stabilizers involve ancilla qubits interacting with neighboring
data qubits, typically four, making the system efficient and
scalable.

Logical qubits are created by defining distinct patches or
defects within the lattice. Logical gates are implemented
through fault-tolerant methods that manipulate these regions.
For example, lattice surgery merges and splits patches, while
braiding involves moving defects in space-time. These oper-
ations preserve error resilience while enabling a universal set
of gates.

Because of their reliance on local operations and compati-
bility with physical constraints, topological codes have one of
the highest known fault-tolerance thresholds. As long as the
physical error rate remains below this threshold, logical errors
can be corrected more quickly than they accumulate, making
topological codes an attractive foundation for building large-
scale quantum computers.

Leading quantum hardware teams, including those at
Google and IBM, have adopted the surface code as a corner-

stone of their fault-tolerant architectures. For instance, Google
demonstrated sustained surface code cycles on a superconduct-
ing chip, where the logical qubit lifetime exceeded that of the
individual physical qubits, a key step toward scalable QEC.

In summary, topological codes offer a practical and
hardware-aligned approach to fault-tolerant quantum com-
puting. Their local interaction model, high threshold, and
adaptability to various platforms position them as one of
the most effective strategies for achieving robust, large-scale
quantum computation.

V. CONCLUSION

Quantum error correction has progressed from a theoretical
response to quantum fragility into a practical foundation for
building reliable quantum computers. Beginning with Shor’s
9-qubit code, researchers demonstrated that it is possible to
detect and correct quantum errors without collapsing quantum
information. This breakthrough laid the groundwork for fault-
tolerant quantum computation, in which both operations and
correction routines are designed to minimize error propagation.

Experimental demonstrations, such as David Cory’s NMR-
based implementation, provided early validation of QEC in
physical systems. These proof-of-concept experiments have
since evolved into more scalable solutions, most notably topo-
logical codes. Among them, the surface code has emerged as
a leading candidate due to its high threshold and compatibility
with modern hardware platforms.

The transition from error-prone physical qubits to stable
logical qubits is a defining objective of quantum computing.
The integration of error correction, fault tolerance, and topo-
logical architectures marks steady progress toward building
large-scale, programmable, and reliable quantum machines.
No longer just a theoretical requirement, quantum error cor-
rection is now a foundational element of practical quantum
computation.
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S. Kim, A. Kitaev, P. V. Klimov, A. R. Klots, A. N. Korotkov,
F. Kostritsa, J. M. Kreikebaum, D. Landhuis, P. Laptev, K.-M. Lau,
L. Laws, J. Lee, K. Lee, B. J. Lester, A. Lill, W. Liu, A. Locharla,
E. Lucero, F. D. Malone, J. Marshall, O. Martin, J. R. McClean,
T. McCourt, M. McEwen, A. Megrant, B. Meurer Costa, X. Mi,
K. C. Miao, M. Mohseni, S. Montazeri, A. Morvan, E. Mount,
W. Mruczkiewicz, O. Naaman, M. Neeley, C. Neill, A. Nersisyan,
H. Neven, M. Newman, J. H. Ng, A. Nguyen, M. Nguyen, M. Y. Niu,

T. E. O’Brien, A. Opremcak, J. Platt, A. Petukhov, R. Potter, L. P.
Pryadko, C. Quintana, P. Roushan, N. C. Rubin, N. Saei, D. Sank,
K. Sankaragomathi, K. J. Satzinger, H. F. Schurkus, C. Schuster,
M. J. Shearn, A. Shorter, V. Shvarts, J. Skruzny, V. Smelyanskiy,
W. C. Smith, G. Sterling, D. Strain, M. Szalay, A. Torres, G. Vidal,
B. Villalonga, C. Vollgraff Heidweiller, T. White, C. Xing, Z. J. Yao,
P. Yeh, J. Yoo, G. Young, A. Zalcman, Y. Zhang, N. Zhu, and G. Q. AI,
“Suppressing quantum errors by scaling a surface code logical qubit,”
Nature, vol. 614, no. 7949, pp. 676–681, 2023. [Online]. Available:
https://doi.org/10.1038/s41586-022-05434-1

[24] A. Dua, T. Jochym-Oapos;Connor, and G. Zhu, “Quantum error
correction with fractal topological codes,” Quantum, vol. 7, p. 1122,
Sep. 2023. [Online]. Available: http://dx.doi.org/10.22331/q-2023-09-
26-1122


