
Motor Algorithmic Regulation System
(MARS)

Northrop Grumman’s noise reduction project for resolver encoders

Team Members:
Aaron Jarmusch <jarmusch@udel.edu>​​ ​ Parallel Computing​
Ethan Conway <ethanc@udel.edu>​ ​ ​ Computer Engineering​
Joel Huffman <joelhuff@udel.edu>​ ​ ​ Software Experience​
Jacob Stafford <rjstaff@udel.edu>​ ​ ​ Control Systems

Executive Summary
For our senior design, we worked with Northrop Grumman to develop a noise reduction
algorithm for their resolver encoder and resolver models. The project intended to create
a better algorithm for their encoder than they currently have, thereby reducing the
amount of noise-reducing material needed to be sent to space. We were constrained by
the physical design of the model since we needed to know precisely how the resolver
was being used with the other components of the mission. We were also constrained by
cost and time. Using MATLAB and Simulink, we worked with Northrop Grumman to
develop resolver encoder models they were unfamiliar with and yielded some positive
results. Working with Northrop Grumman was challenging because of the constant
communication back and forth that occurs over email instead of just having to
communicate with our group members. We got a functioning physical model that could
read out the resolver signals, which would be fed into our encoder designs. We also
created three simulations of resolver encoders and presented them to Northrop
Grumman. There was also an attempt to create a recurrent neural network encoder to
explore its potential as an encoder. Our design is split between a physical copy of the
version that mirrors Northrop Grummans’ model, which will be sent on the Mars rover to
space, and simulations of the encoder in Simulink to explore various encoder models.

Problem Statement
We worked with Northrop Grumman to design a better noise-reducing resolver encoder
for their armatures which use resolvers, which will help improve the functionality of the
motors of the Mars rover on NASA’s upcoming Mars missions.

Objectives
The overall goal of this system is to create an algorithm for a three-phase brushless
motor alongside Northrop Grumman that will help reduce noise for the system they are
sending to Mars on the Mars rover. This, in turn, will help reduce the amount of signal
noise-canceling material needed in the production of the motor, significantly reducing
the engine's total weight. These algorithms were developed by building and testing
several different MATLAB Simulink resolver encoder models. Another system goal
would be to market this algorithm in a broader sense to other companies that rely on
precision with brushless motors. This algorithm could also help them reduce noise and
increase efficiency. Success would be achieving such an algorithm that works as
intended and is better than what is currently being implemented. A failure would be not
being able to complete the algorithm due to various factors such as communication with
the third-party (Northrop Grumman) or lack of knowledge and time to develop a better
algorithm than the one Northrop Grumman has in place at the moment. Some smaller
objectives for this project are to establish a small physical model that can mirror the
apparatus that Northrop Grumman uses. Still, on a much smaller scale, we can also
begin developing a neural network for the algorithms.

Realistic Design Constraints
Our biggest engineering constraint was needing help to change the model. We didn’t
know the exact details of how the motor affects the other systems since we didn’t
remember those. Therefore we couldn’t drastically change the configuration of the
motor or resolver and will be working on software enhancements. This was set in place
by our working Northrop Grumman. The following two most considerable constraints
are time and cost. We had to implement a design by the end of May, within our senior
design budget of ~$200. These two constraints are set in place by the nature of the
Senior Design course. Finally, we were bound by the physics of our model. Our motor
could not spin at the same speeds as the Northrop Grumman’s motor, thousands of
cycles per second. The physical length of our model also bounds us. We could only
run the motor for so long before the tread screw hits the end of the model.

Fall Goals
The goal of the fall semester was to build a model of the current system's approximate
physical apparatus. We managed to get the motor and resolver in place with a trendline
attached to the motor. We successfully ran the motor with the PWM signal going into the

ESC, which is used to spin the motor. We also created a virtual simulation of the
resolver and resolver encoder in Simulink, then combined them for a final simulation
apparatus. We also received and signed the NDA with Northrop Grumman, which
allowed us to collaborate more on the Simulink models.

Spring Goals
The goal of the spring was to finish the system's model, read from the resolver, and
create a resolver encoder. We found a better way to run the brushless motor, which
gave us better control over the speed and direction the motor could spin. This was
achieved with an Arduino that controlled the PWM signals that controlled the movement
of the motor and an improved 3D-printed mount for the motor and resolver. Once that
was complete, we completed work on 3 MATLAB Simulink models that tested the
effectiveness of different resolver encoder algorithms. The three different resolver
encoders that were tested were the PLL (phase-locked loop) resolver encoder, the
Third-Order Rational Polynomial resolver encoder, and the S-Transform resolver
encoder. All of the models were found satisfactory to Northrop Grumman, the
Third-Order Rational Polynomial model, in particular, being the most adequate to them.

Prototype
Small-scale physical apparatus that mirrors what Northrop Grumman will send to space.
The device includes a DC brushless motor, an Arduino, which acts as a PWM motor
driver, a resolver, and a resolver encoder which reads the position of the trendline
screw. An algorithm is implemented in the resolver encoder to reduce noise and
digitalize the resolver signal. Northrop Grumman’s primary goal is focused on the
algorithm and simulation. However, our team also wanted to have a physical apparatus
prototype that we could use to test the simulation and our various algorithms.

Approach
We researched every aspect of the project while waiting for the non-disclosure
agreement and more involvement from Northrop Grumman, including the brushless
motor, resolver, getting Simulink configured in MATLAB, and the different libraries
needed inside MATLAB. We also researched ways to run the motor and landed on
using the PWM in the ESC to control the brushless motor. Establishing an
understanding of brushless motors and the systems that support them gave us a better
idea of how to get started on the hardware aspect of the project. We also had to
research using a brushless motor, sensor, and FPGA board to simulate the motor in real
applications. We used MATLAB Simulink to determine the performance of various
simulations we test and create. We also used an Arduino to build a program to run the
motor, creating a baseline program based on a standard program for brushless motors.
Once regular meeting times were established with Nothrop Grumman, we worked
closely with them to create and test our different Simulink models.

Fall Semester

WEEK OF TASK

9/26/2022 ●​ Initial meeting with NG

10/09/2022 ●​ Submit proposal - Define our Fall Goals

10/16/2022 ●​ Algorithms Research - started waiting on NDA

10/30/2022 ●​ Start Designing motor holder w/ CAD

11/6/2022 ●​ Start Meeting with NG regularly to get more information

11/13/2022 ●​ Get Hardware for Replication

11/20/2022 ●​ 3D print updated part for physical model

11/27/2022 ●​ Receive and sign the NDA

12/04/2022 ●​ Baseline Algorithm Finished in Matlab

12/06/2022 ●​ Final Fall Presentation

Planned Spring Semester

WEEK OF TASK

02/07/2023 ●​ Meet up, and see what was worked on over the winter​
Continue work on Matlab Simulink models.​
Continue biweekly meetings with NG

02/14/2023 ●​ Continue work on the physical model using Arduino​
Order more physical parts as needed

03/07/2023 ●​ Produce noise data files for Matlab testing

03/14/2023 ●​ Begin work on the neural network project

03/21/2023 ●​ 3D print updated parts for the physical model

04/04/2023 ●​ Register group for research day

04/11/2023 ●​ Finish all Simulink models before this date

04/18/2023 ●​ Complete research poster for printing

05/02/2023 ●​ Present research poster in iSuite for Research Day

05/16/2023 ●​ Present final project in iSuite​
Turn in the final report.

Challenges
●​ Learning to work with MATLAB Simulink.
●​ Using Matlab to alter and optimize algorithms.
●​ Exporting our code into VHDL.
●​ Understanding Brushless Motors on a technical level.
●​ Working with a third party.
●​ Learning how to create a neural network

Design

Overall System
The overall system works with the algorithm and simulation in conjunction with the
physical apparatus to test and demonstrate how the algorithm we create reduces noise
in the system. This system emulates something that Northrop Grumman would put on a
Mars rover that would be sent to space for various testing and space exploration.

Hardware
The hardware aspect of the system is a physical apparatus that we can use to test the
algorithm. It consists of a brushless motor, resolver, Arduino to send PWM signals,
electronic speed controller, two couplers, a threaded rod, a 3D-printed stand, a power
supply, potentiometer, power supply, oscilloscope, and wave generator. The apparatus
sends pulse width modulation signals from the Arduino to the electronic speed
controller. This causes the brushless motor to spin and is controlled by the
potentiometer. The motor can rotate in both directions and increases and decreases in
speed depending on how far the potentiometer is turned. This will turn the threaded rod
and cause a 3D-printed piece attached to the rod to move back and forth on one plane
of motion. When the brushless motor spins, this causes the shaft of the resolver on the
opposite side of the motor to spin along with it. The resolver then takes the input from
the brushless motor and allows us to collect data from it. We use the waveform
generator to send an excitation signal into the resolver. Then, the sine and cosine
waves can be extracted to determine the position. These signals can be removed from
the oscilloscope and sent into our various algorithms.

Physical Apparatus

Figure 1: Top view of physical apparatus.

Figure 2: Side view of apparatus.

Figure 3: Oscilloscope to measure resolver. Sine (Yellow), Cosine (Purple).

CAD Design
The CAD design shown below is a modification of a design from a previous senior
design group. This group used the apparatus to design a giant 3D printer. We are
repurposing this design to emulate a moving platform on the Mars rover. On the left
side of the invention, we measured and designed holes to secure the brushless motor
onto the 3D-printed piece. Then, we extruded the other side to hold the resolver. There
are also cutouts on the back, giving us access to the holes and the ability to screw the
motor on with four nuts and bolts. We also widened the holes at the bottom, which hold
two metal rods. These rods are the base of the apparatus, which causes it to be more
sturdy and hold it up.

Figure 4: Main view of CAD design for the printed piece to hold motor and resolver.

Figure 5: Front view of CAD design.

Figure 6: Top view of CAD design.

Arduino Code and Wiring
The code is relatively simple but gives us all the functionality we need to spin the motor
in both directions. Using the Servo library from Arduino allows us to arm the motor,
which is necessary for the motor to function. Once the potentiometer is at the center, the
motor beeps to indicate that it is armed and ready to go. We can then turn the
potentiometer clockwise and counterclockwise, causing the motor to spin in both
directions.

Figure 7: Code for Arduino to send PWM signals.

Figure 8: Arduino UNO board used.

Figure 9: Potentiometer used to control the brushless motor with Arduino.

Shown below is the wiring of the potentiometer to the Arduino board. The red is
connected to five volts, and the blue is connected to the ground. The yellow wire is
connected to the analog 0 input. This allows us to get an analog reading from 0 to 1023
and transfer this into a PWM value to send to the ESC and control the brushless motor.

Figure 10: Potentiometer hooked up to Arduino. Red (5v), Blue (Gnd), Yellow (A0)

Software
The project's software consists of MATLAB Simulink simulations and an attempted
RNN. The simulations all use the exact simulation of a resolver, which was developed
in collaboration with Northrop Grumman. After the resolver, the resolver encoder is
varied across simulations, as that was the main focus of our project with Northrop
Grumman. By using Simulink, we can easily transmit our simulation to Northrop
Grumman, who has a similar setup with which they can exploit onto their systems. We
can also vary the signals from realistic motor velocities to do-right impossible velocities.
It was possible to add noise into the Matlab, but Northrop Grumman needed to be more
focused on us exploring how various noises affected the systems and took the
simulations at the baseline of being able to read the sine and cosine waves into position
and velocity.

To summarize what the goal of the encoder is, it is to give out data such that we can find
the position, either the position itself or the velocity or arctan, which is just the position
modded, so concerning time, we can find the position. Each resolver encoder tries to
achieve this using different mathematical properties. We shall detail each one below
and include screenshots of each encoder and the resolver model. In the fall report, we
stated we could not obtain specific libraries for Matlab or Simulink, we have since
corrected this by getting the licensing from the school.

The Simulink of the Resolver across both semesters:

Figure 8: Screenshot of the simulink resolver we had in the fall.

Figure 9: Screenshot of the simulink resolver encoder we made by the end of the
spring.

As the figures above show, we have worked with Northrop Grumman to further develop
a simulation of resolvers after the end of the fall semester. The newer model has more
outputs, allowing us to gauge the encoder's performance by comparing it to the
simulations’ truths or signals we could see in real life. The newer model also allows for
more realistic resolver signals, as will be noted in future figures.

The Simulations of Resolver Encoders across both semesters:

Figure 10: Screenshot of the PLL simulink resolver encoder we had in the fall.

Figure 11: Screenshot of the PLL simulink resolver encoder we made by the end of the
spring.

Figure 12: Screenshot of the third-order ration polynomial simulink resolver encoder we
made by the end of the spring.

Figure 13: Screenshot of the S-Transform simulink resolver encoder we made by the
end of the spring.

We have worked over the semester to develop resolver encoders further, as that was
Northrop Grumman's primary goal for us. The PLL uses PI control logic to adjust
velocity with input and feedback. The significant change is to adjust the feedback by
modding 2pi the feedback.

The second encoder simulations use different math to achieve the goal of the encoder.
The third-order ration polynomial tries to approximate the arctangent function with a
polynomial of the third order. After filtering them, it does this by comparing the cosine
and sine signals and some curve fitting to achieve better results than the PLL.

The last encoder uses Fourier and Inverse Fourier to realize an arctan. The problem is,
however, that the Fourier is extensively expensive on computation power and time,
making the last encoder impractical compared to the first two.

Full Apparatus Simulation of Both Semesters

Figure 14: Screenshot of the fall simulation with the resolver and resolver encoder.

Figure 15: Screenshot of the PLL simulation in the spring. Note the Sample and Hold
before the encoder.

Figure 18: Screenshot of the full Third-Order Rational Polynomial simulation.

Figure 17: Screenshot of the full S-Transform simulation in Simulink.

As figures above show the simulation of change by their encoders, each using the same
resolver simulation as a control. The difference in the central part of the encoders is
explored under the close-ups of the encoders in the previous section. It should be
noted that the PLL uses a sample and hold before feeding into the encoder, though the
third-order ration polynomial does similar filtering of the education within its encoder. It
should be noted that the purple box is a scope to read the output signals, with some
mux to overlay two signals in the same graph. A trick that came out of our talks with
Northrop Grumman.

Output Performance of Simulations

Figure 18: Screenshot of the simulation output in the fall when it is fed a tangent input.
On the left is the output of the resolver, and on the right is the output of the encoder. As
you can see, we had some work ahead of us.

Figure 19: Screenshot of the performance of the Spring’s PLL with high gains. The top
color of the legend is the expected signal, and the bottom is the result.

Figure 20: Screenshot of the performance of the Spring’s PLL with moderate gains. The
top color of the legend is the expected signal, and the bottom is the result.

Figure 21: Screenshot of the Spring’s third-order rational polynomial performance. The
top color of the legend is the expected signal, and the bottom is the result.

As the figures above show, we have significantly improved performance. The
S-Transform requires too much time to process the signal, thus a lack of accurate
results for that simulation. Northrop Grumman had us explore ways to reduce
oscillations in the positional signal seen toward the beginning of the simulation run. The
only way we have discovered, after exploring several options, to reduce these
oscillations was to increase the frequency of them and thereby reduce the amplitude by
increasing the integral gain of the encoder. The difference can be seen in Figures 19
and 20. Lastly, in Figure 21, we show our best results which came from the third-order

rational polynomial. The third-order rational polynomial outputs arctangent of the
position, which, if summed, would result in the position, but a sum of such caliber
cannot be easily realized in Simulink, nor did it need to be. The third-order polynomial
follows the arctangent the best and does not result from massive gains.

Recurrent Neural Network (RNN)
As we approached the final stage of the semester, we aimed to further expand our
project by implementing a Recurrent Neural Network (RNN). The motivation behind this
step was the expectation that the RNN would outperform any Simulink MATLAB models
regarding the accuracy and predictive capabilities.

To facilitate this implementation, we turned to Google Colab, a robust data analysis and
machine learning tool. Google Colab provides an environment where executable Python
code can be combined with rich text, charts, images, HTML, and LaTex, all stored
conveniently in Google Drive. This collaborative platform offered us the advantage of
developing as a team with easy access to shared resources.

One notable advantage of Google Colab is its access to GPUs (Graphics Processing
Units), eliminating the need to transfer our project to a separate system for GPU
utilization. This streamlined our workflow and allowed us to take full advantage of the
computational power offered by GPUs, which is particularly beneficial for training
complex neural networks.

As we began utilizing Google Colab, we recognized the need to enhance our
understanding of Neural Networks. Neural networks are machine learning algorithms
that enable us to provide input data and their corresponding desired outputs, allowing
the network to learn from these examples. This learning process empowers the RNN to
generalize its knowledge and make accurate predictions when presented with new data.

By implementing an RNN within Google Colab, we aimed to leverage the capabilities of
this robust neural network architecture. The RNN's ability to retain information from
previous inputs makes it suitable for sequential data, time series analysis, and tasks
involving temporal dependencies. By training the RNN with appropriate datasets, we
could achieve improved performance and accurate predictions for our project.

Our project's final stage involved incorporating a Recurrent Neural Network (RNN) using
Google Colab. This collaborative tool provided a unified data analysis and machine
learning platform, enabling team development and easy access to shared resources.
The RNN, a robust machine learning algorithm, allowed us to input data and desired
outputs, and with training, it would provide accurate predictions for new data. By
harnessing the capabilities of Google Colab and the RNN, we aimed to enhance the
accuracy and performance of our project.

Implementation of RNN

The task at hand seemed straightforward initially: implementing an RNN based on the
documentation we discovered from Keras. However, as is often the case with seemingly
simple tasks, the execution proved to be more challenging than expected. To begin with
any coding assignment, the first step is to import the necessary libraries. The image
provided below displays the final list of imports we incorporated. As depicted, we utilized
PyTorch, Keras, and Numpy to facilitate our implementation.

Figure 22: Google Colab Import Section

The import section in Google Colab is essential for setting up the required libraries and
dependencies, ensuring effective code execution. It includes essential libraries like
PyTorch, Keras, and Numpy, which are crucial for various aspects of our project.
PyTorch provides functionalities for building and training neural networks, while Keras
simplifies the development of neural network models with its high-level API. Numpy, on
the other hand, enables efficient numerical operations on arrays and matrices. By
incorporating these libraries, we ensure our code has the necessary resources to
implement and train the Recurrent Neural Network (RNN). These libraries offer data
manipulation, model creation, training, and evaluation functions. Overall, the import
section lays the foundation for our project, enabling us to leverage the capabilities of
these powerful libraries within the Google Colab environment.

After setting up the necessary libraries, our next step involved loading the data required
for our project. To accomplish this, we used Google Drive, which provided a convenient

way to store and access our recorded Sin, Cos, and Velocity signals. Using Google
Drive, we ensured our data was easily accessible and well-organized.

In the figure below, we demonstrate how we loaded these three signals into our Google
Colab environment, enabling us to perform further analysis and processing:

Figure 23: Loading Data from Google Drive

Loading signals from Google Drive provided seamless access to the Sin, Cos, and
Velocity data, which is crucial for training and testing our RNN. Google Drive's
centralized storage facilitated collaborative development and eliminated the need for
manual data transfer or individual storage. Overall, Google Drive streamlined data
loading, enabling easy access to our signals in Google Colab for analysis, processing,
and RNN training.

After successfully loading the data, the next crucial step was to process and shape the
data to suit the requirements of the RNN model. The figure below visually depicts the
data shaping process, often considered the most laborious part of model development.

The process of shaping the data for the RNN model required meticulous attention to
detail and careful consideration of the specific model's input requirements. It involved
transforming the raw data into a suitable format that effectively captured the temporal
nature of the problem.

Figure 24: Shaping Data for RNN Model

By shaping the data in accordance with the figure depicted above, we ensured that the
RNN model could process the data correctly and make accurate predictions. This
critical step paved the way for successful training, evaluation, and application of the
RNN model to our problem domain.

Figure 25: RNN Model Build

Lastly, our focus shifted towards building the RNN model, encompassing several vital
points. While constructing the model itself was relatively straightforward, the most
challenging aspect lay in training the model effectively. During this process, we
encountered a specific obstacle: incorporating different types of noise to enhance the
model's ability to handle real-world disturbances, the exact nature of which remains
unknown.

Initially, our approach involved introducing various forms of noise during the training
phase. The intention was to expose the model to various disturbances, thereby
simulating real-life scenarios more accurately. However, despite correctly organizing
and preparing the data, we needed help achieving the desired output, even after
multiple attempts at reshaping the data and refining the training process.

Our results did not align closely with the intended output. Due to our persistent
challenges and the lack of progress in attaining the desired performance, we
temporarily set aside this specific problem. Despite our diligent efforts, the outcome fell
below our expectations. Nonetheless, we acknowledged the complexity and intricacy of
the task, recognizing that further exploration and experimentation might be necessary to
address this challenge effectively.

By acknowledging the limitations and complexities associated with training the RNN
model and recognizing the need for additional refinement, we remain open to revisiting
this problem. This experience has provided valuable insights into the difficulties of
achieving accurate predictions in real-world scenarios, emphasizing the importance of
continuously improving and fine-tuning the training process to enhance model
performance.

Safety Issues
Safety issues involved in this project include data safety and electrical safety when
working with voltage. Northrop Grumman required our team to sign a non-disclosure
agreement to work on this project. This is because most of their projects are directly
related to working with the United States government. Therefore, data safety is
something our team needs to be mindful of when sharing details of our project with
others and in presentations. The other safety issue involves practicing electrical safety
when working with our physical apparatus. We were working with a high-wattage motor
and PWM, which both need voltage in order to get them to function correctly.

Project Results
We have completed our Simulink models as required by Northrop Grumman. This
includes the PLL (phase-locked loop) resolver encoder algorithm, the Third-Order
Rational Polynomial resolver encoder algorithm, and the S-Transform resolver encoder
algorithm. We have presented these models to Northrop Grumman and received
positive feedback, and completed our part of the project for them. There were a lot of
challenges and lessons that we learned from this project, including learning to work with
MATLAB Simulink, using MATLAB to alter and optimize algorithms, getting to
understand brushless motors on a more technical level, learning how to create a neural
network, and probably the most important, learning to work with a third party. Some
standard design modules that could potentially be used for future projects are the
physical model we produced for the project and the Simulink models. Our group's
physical model for this project was already reused material from a previous senior
design project to be reused in the future. The Simulink models are very complex and
potentially reusable, but it may depend on the NDA that our group signed with Northrop
Grumman on it being able to be reused in the future. If we continue working with
Northrop Grumman, we could work on additional Simulink models for resolver encoder
algorithms. Doing this could lead to the discovery of a better algorithm for the purposes
that Northrop Grumman needs to be fulfilled.

Another thing that we would like to continue working on is the development of the neural
network. The neural network was not one of the goals given to us by Northrop
Grumman, nor was it one of the goals set for our project by us, but it was something we
wanted to test on the side. Because of this, there was not much time and effort put into
it compared to what Northrop Grumman wanted from us, and it was primarily left
unfinished. If we had more time for this project, the neural network could work better
than a traditional Simulink algorithm, so it would be worth pursuing.

Engineering Standards
A few standards we defined are as follows:

IEEE Recommended Practice for Motor Protection in Industrial and Commercial
Power Systems.

This protection describes the use of electric motors in industrial and commercial
applications. This covers dc motor protection with factors based on types of
protection, low-voltage and medium-voltage protection, fixed speed, and an
adjustable speed drive application. IEEE 3004.8-2016

High-Integrity System Modeling Guidelines.

Provides model setting, block usage, and block parameter considerations for
complete, unambiguous, robust, and verifiable models. Complying with the
DO-178C / DO-331, IEC 61508, IEC 62304, ISO 26262, or EN 50128 industry
standards.

MAB Guidelines.

A guideline for basic rules of modeling with Simulink. The purpose of this
guideline is to allow for an easy and shared understanding of control systems.
The objectives stated for this guideline are readability, simulation and verification,
and code generation. Model Advisor Checks for MAB and JMAAB Guidelines

References
●​ https://www.northropgrumman.com/

●​ https://www.mathworks.com/help/simulink/mdl_gd/maab/model-advisor-checks-fo
r-mab-and-jmaab-guidelines.html

●​ https://standards.ieee.org/ieee/3004.8/5028/

●​ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231115/

https://standards.ieee.org/ieee/3004.8/5028/
https://www.mathworks.com/solutions/aerospace-defense/standards/do-178.html
https://www.mathworks.com/solutions/aerospace-defense/standards/do-178.html
https://www.mathworks.com/solutions/automotive/standards/iec-61508.html
https://www.mathworks.com/solutions/medical-devices/industry-standards.html?s_tid=srchtitle
https://www.mathworks.com/solutions/automotive/standards/iso-26262.html
https://www.mathworks.com/solutions/railway-systems/en-50128.html?s_tid=srchtitle
https://www.mathworks.com/help/simulink/mdl_gd/maab/model-advisor-checks-for-mab-and-jmaab-guidelines.html
https://www.northropgrumman.com/
https://www.mathworks.com/help/simulink/mdl_gd/maab/model-advisor-checks-for-mab-and-jmaab-guidelines.html
https://www.mathworks.com/help/simulink/mdl_gd/maab/model-advisor-checks-for-mab-and-jmaab-guidelines.html
https://standards.ieee.org/ieee/3004.8/5028/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231115/

●​ https://www.mathworks.com/help/simulink/gui/libraries.html

●​ https://www.hindawi.com/journals/amse/2016/1497360/

●​ https://ieeexplore.ieee.org/abstract/document/1185415

●​ https://www.tensorflow.org/guide/keras/rnn

●​ https://colab.research.google.com/

Appendix

Equipment Needed

We have utilized various equipment and tools in our project to accomplish our
objectives. We have used a brushless motor, a resolver, 3D printed pieces, a threaded
rod, Arduino for PWM, a brushless ESC (Electronic Speed Controller), and two
couplers. We also need an oscilloscope to take readings, a power supply, and waveform
generator. These elements have played crucial roles in the functioning and operation of
our physical system.

Additionally, implementing MATLAB has been integral to the success of our project.
Within MATLAB, we extensively relied on Simulink, a dynamic systems modeling and
simulation tool, to design and simulate our system's behavior and performance.

Furthermore, we received recommendations from Northrop Grumman during our
project. They suggested employing several specific libraries and tools within MATLAB to
enhance our work. One such tool is the "Fixed-Point Designer," which aids in
developing and optimizing fixed-point systems. We also used the "Electronics and
Mechatronics Sensors" library, which provides a range of sensor models for designing
and testing electronic and mechatronic systems.

Finally, we leveraged the capabilities of the "Foundation Library Mechanical Sensors" to
incorporate various mechanical sensors into our system. This library offers a
comprehensive set of pre-built sensor models, enabling us to simulate and evaluate the
performance of our mechanical components accurately.

Our project has relied on diverse equipment, including a brushless motor, resolver, 3D
printed components, threaded rod, PWM, brushless ESC, and couplers. MATLAB and
its Simulink platform have been essential for simulation and analysis. The
recommendations from Northrop Grumman introduced us to valuable tools such as the
"Fixed-Point Designer," "Electronics and Mechatronics Sensors," "Foundation Library
Mechanical Sensors," and "HDL Coder," enabling us to enhance our project's
performance and implementation.

https://www.mathworks.com/help/simulink/gui/libraries.html
https://www.hindawi.com/journals/amse/2016/1497360/
https://ieeexplore.ieee.org/abstract/document/1185415
https://www.tensorflow.org/guide/keras/rnn
https://colab.research.google.com/

Budget
Our group was given a budget of around $200. We didn’t need to spend that much extra
money since we repurposed a previous senior design apparatus and motors. We were
also provided with a brushless motor, resolver, brushless ESC, and Arduino. Therefore,
the only cost we used on the physical apparatus was the two couplers to connect the
resolver to the motor, the motor to the threaded rod, and a new resolver since the one
we found from old senior designs didn’t work. Both couplers cost us around $25
combined. The resolver used cost us $57. We also would need access to the MATLAB
libraries stated in the “Equipment Needed” section, which would be hundreds of dollars
over budget. In the end, these libraries were provided for free through the University, so
no extra cost was generated there.

	Team Members:
	Executive Summary
	
	Problem Statement
	Objectives
	Realistic Design Constraints
	Fall Goals
	Spring Goals
	Prototype

	Approach
	Fall Semester
	Planned Spring Semester

	Challenges
	Design
	Overall System
	Hardware
	Physical Apparatus
	CAD Design
	Arduino Code and Wiring
	Software
	The Simulink of the Resolver across both semesters:
	The Simulations of Resolver Encoders across both semesters:
	Full Apparatus Simulation of Both Semesters
	Output Performance of Simulations

	Recurrent Neural Network (RNN)
	Implementation of RNN
	Safety Issues
	Project Results
	Engineering Standards
	IEEE Recommended Practice for Motor Protection in Industrial and Commercial Power Systems.
	High-Integrity System Modeling Guidelines.
	MAB Guidelines.

	References
	Appendix
	Equipment Needed
	Budget

