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Executive Summary 
For our senior design, we worked with Northrop Grumman to develop a noise reduction 
algorithm for their resolver encoder and resolver models. The project intended to create 
a better algorithm for their encoder than they currently have, thereby reducing the 
amount of noise-reducing material needed to be sent to space. We were constrained by 
the physical design of the model since we needed to know precisely how the resolver 
was being used with the other components of the mission. We were also constrained by 
cost and time. Using MATLAB and Simulink, we worked with Northrop Grumman to 
develop resolver encoder models they were unfamiliar with and yielded some positive 
results.  Working with Northrop Grumman was challenging because of the constant 
communication back and forth that occurs over email instead of just having to 
communicate with our group members.  We got a functioning physical model that could 
read out the resolver signals, which would be fed into our encoder designs.  We also 
created three simulations of resolver encoders and presented them to Northrop 
Grumman.  There was also an attempt to create a recurrent neural network encoder to 
explore its potential as an encoder.  Our design is split between a physical copy of the 
version that mirrors Northrop Grummans’ model, which will be sent on the Mars rover to 
space, and simulations of the encoder in Simulink to explore various encoder models.   

 



Problem Statement 
We worked with Northrop Grumman to design a better noise-reducing resolver encoder 
for their armatures which use resolvers, which will help improve the functionality of the 
motors of the Mars rover on NASA’s upcoming Mars missions.   

Objectives 
The overall goal of this system is to create an algorithm for a three-phase brushless 
motor alongside Northrop Grumman that will help reduce noise for the system they are 
sending to Mars on the Mars rover. This, in turn, will help reduce the amount of signal 
noise-canceling material needed in the production of the motor, significantly reducing 
the engine's total weight. These algorithms were developed by building and testing 
several different MATLAB Simulink resolver encoder models. Another system goal 
would be to market this algorithm in a broader sense to other companies that rely on 
precision with brushless motors. This algorithm could also help them reduce noise and 
increase efficiency. Success would be achieving such an algorithm that works as 
intended and is better than what is currently being implemented. A failure would be not 
being able to complete the algorithm due to various factors such as communication with 
the third-party (Northrop Grumman) or lack of knowledge and time to develop a better 
algorithm than the one Northrop Grumman has in place at the moment. Some smaller 
objectives for this project are to establish a small physical model that can mirror the 
apparatus that Northrop Grumman uses. Still, on a much smaller scale, we can also 
begin developing a neural network for the algorithms. 
 

Realistic Design Constraints 
Our biggest engineering constraint was needing help to change the model.  We didn’t 
know the exact details of how the motor affects the other systems since we didn’t 
remember those.  Therefore we couldn’t drastically change the configuration of the 
motor or resolver and will be working on software enhancements.  This was set in place 
by our working Northrop Grumman.  The following two most considerable constraints 
are time and cost.  We had to implement a design by the end of May, within our senior 
design budget of ~$200.  These two constraints are set in place by the nature of the 
Senior Design course.  Finally, we were bound by the physics of our model.  Our motor 
could not spin at the same speeds as the Northrop Grumman’s motor, thousands of 
cycles per second.  The physical length of our model also bounds us.  We could only 
run the motor for so long before the tread screw hits the end of the model.   
 

Fall Goals 
The goal of the fall semester was to build a model of the current system's approximate 
physical apparatus. We managed to get the motor and resolver in place with a trendline 
attached to the motor. We successfully ran the motor with the PWM signal going into the 



ESC, which is used to spin the motor. We also created a virtual simulation of the 
resolver and resolver encoder in Simulink, then combined them for a final simulation 
apparatus. We also received and signed the NDA with Northrop Grumman, which 
allowed us to collaborate more on the Simulink models. 

Spring Goals 
The goal of the spring was to finish the system's model, read from the resolver, and 
create a resolver encoder. We found a better way to run the brushless motor, which 
gave us better control over the speed and direction the motor could spin. This was 
achieved with an Arduino that controlled the PWM signals that controlled the movement 
of the motor and an improved 3D-printed mount for the motor and resolver. Once that 
was complete, we completed work on 3 MATLAB Simulink models that tested the 
effectiveness of different resolver encoder algorithms. The three different resolver 
encoders that were tested were the PLL (phase-locked loop) resolver encoder, the 
Third-Order Rational Polynomial resolver encoder, and the S-Transform resolver 
encoder. All of the models were found satisfactory to Northrop Grumman, the 
Third-Order Rational Polynomial model, in particular, being the most adequate to them. 

Prototype 
Small-scale physical apparatus that mirrors what Northrop Grumman will send to space.  
The device includes a DC brushless motor, an Arduino, which acts as a PWM motor 
driver, a resolver, and a resolver encoder which reads the position of the trendline 
screw. An algorithm is implemented in the resolver encoder to reduce noise and 
digitalize the resolver signal. Northrop Grumman’s primary goal is focused on the 
algorithm and simulation. However, our team also wanted to have a physical apparatus 
prototype that we could use to test the simulation and our various algorithms. 

Approach 
We researched every aspect of the project while waiting for the non-disclosure 
agreement and more involvement from Northrop Grumman, including the brushless 
motor, resolver, getting Simulink configured in MATLAB, and the different libraries 
needed inside MATLAB. We also researched ways to run the motor and landed on 
using the PWM in the ESC to control the brushless motor. Establishing an 
understanding of brushless motors and the systems that support them gave us a better 
idea of how to get started on the hardware aspect of the project. We also had to 
research using a brushless motor, sensor, and FPGA board to simulate the motor in real 
applications. We used MATLAB Simulink to determine the performance of various 
simulations we test and create. We also used an Arduino to build a program to run the 
motor, creating a baseline program based on a standard program for brushless motors. 
Once regular meeting times were established with Nothrop Grumman, we worked 
closely with them to create and test our different Simulink models. 
 
 



Fall Semester 

WEEK OF TASK 

9/26/2022 ●​ Initial meeting with NG 

10/09/2022 ●​ Submit proposal - Define our Fall Goals 

10/16/2022 ●​ Algorithms Research - started waiting on NDA 

10/30/2022 ●​ Start Designing motor holder w/ CAD  

11/6/2022 ●​ Start Meeting with NG regularly to get more information 

11/13/2022 ●​ Get Hardware for Replication 

11/20/2022 ●​ 3D print updated part for physical model  

11/27/2022 ●​ Receive and sign the NDA 

12/04/2022 ●​ Baseline Algorithm Finished in Matlab 

12/06/2022 ●​ Final Fall Presentation 

Planned Spring Semester 

WEEK OF TASK 

02/07/2023 ●​ Meet up, and see what was worked on over the winter​
Continue work on Matlab Simulink models.​
Continue biweekly meetings with NG 

02/14/2023 ●​ Continue work on the physical model using Arduino​
Order more physical parts as needed 

03/07/2023 ●​ Produce noise data files for Matlab testing 

03/14/2023 ●​ Begin work on the neural network project 

03/21/2023 ●​ 3D print updated parts for the physical model 

04/04/2023 ●​ Register group for research day 

04/11/2023 ●​ Finish all Simulink models before this date 

04/18/2023 ●​ Complete research poster for printing 

05/02/2023 ●​ Present research poster in iSuite for Research Day 



05/16/2023 ●​ Present final project in iSuite​
Turn in the final report. 

 

Challenges 
●​ Learning to work with MATLAB Simulink. 
●​ Using Matlab to alter and optimize algorithms. 
●​ Exporting our code into VHDL. 
●​ Understanding Brushless Motors on a technical level. 
●​ Working with a third party. 
●​ Learning how to create a neural network 

Design 

Overall System 
The overall system works with the algorithm and simulation in conjunction with the 
physical apparatus to test and demonstrate how the algorithm we create reduces noise 
in the system. This system emulates something that Northrop Grumman would put on a 
Mars rover that would be sent to space for various testing and space exploration. 

Hardware 
The hardware aspect of the system is a physical apparatus that we can use to test the 
algorithm. It consists of a brushless motor, resolver, Arduino to send PWM signals, 
electronic speed controller, two couplers, a threaded rod, a 3D-printed stand, a power 
supply, potentiometer, power supply, oscilloscope, and wave generator. The apparatus 
sends pulse width modulation signals from the Arduino to the electronic speed 
controller. This causes the brushless motor to spin and is controlled by the 
potentiometer. The motor can rotate in both directions and increases and decreases in 
speed depending on how far the potentiometer is turned. This will turn the threaded rod 
and cause a 3D-printed piece attached to the rod to move back and forth on one plane 
of motion. When the brushless motor spins, this causes the shaft of the resolver on the 
opposite side of the motor to spin along with it. The resolver then takes the input from 
the brushless motor and allows us to collect data from it. We use the waveform 
generator to send an excitation signal into the resolver. Then, the sine and cosine 
waves can be extracted to determine the position. These signals can be removed from 
the oscilloscope and sent into our various algorithms. 
 



Physical Apparatus 

 
Figure 1: Top view of physical apparatus. 
 

 
Figure 2: Side view of apparatus. 
 
 



 
Figure 3: Oscilloscope to measure resolver. Sine (Yellow), Cosine (Purple). 

CAD Design 
The CAD design shown below is a modification of a design from a previous senior 
design group. This group used the apparatus to design a giant 3D printer. We are 
repurposing this design to emulate a moving platform on the Mars rover.  On the left 
side of the invention, we measured and designed holes to secure the brushless motor 
onto the 3D-printed piece. Then, we extruded the other side to hold the resolver. There 
are also cutouts on the back, giving us access to the holes and the ability to screw the 
motor on with four nuts and bolts. We also widened the holes at the bottom, which hold 
two metal rods. These rods are the base of the apparatus, which causes it to be more 
sturdy and hold it up. 
 
 



 
Figure 4: Main view of CAD design for the printed piece to hold motor and resolver. 



 
Figure 5: Front view of CAD design. 
 

 
Figure 6: Top view of CAD design. 



Arduino Code and Wiring 
The code is relatively simple but gives us all the functionality we need to spin the motor 
in both directions. Using the Servo library from Arduino allows us to arm the motor, 
which is necessary for the motor to function. Once the potentiometer is at the center, the 
motor beeps to indicate that it is armed and ready to go. We can then turn the 
potentiometer clockwise and counterclockwise, causing the motor to spin in both 
directions. 
 

 
Figure 7: Code for Arduino to send PWM signals. 
 
 
 
 
 
 



 
Figure 8: Arduino UNO board used. 
 

 
Figure 9: Potentiometer used to control the brushless motor with Arduino. 
 
 



Shown below is the wiring of the potentiometer to the Arduino board. The red is 
connected to five volts, and the blue is connected to the ground. The yellow wire is 
connected to the analog 0 input. This allows us to get an analog reading from 0 to 1023 
and transfer this into a PWM value to send to the ESC and control the brushless motor. 
 

 
Figure 10: Potentiometer hooked up to Arduino. Red (5v), Blue (Gnd), Yellow (A0) 

Software 
The project's software consists of MATLAB Simulink simulations and an attempted 
RNN.  The simulations all use the exact simulation of a resolver, which was developed 
in collaboration with Northrop Grumman.  After the resolver, the resolver encoder is 
varied across simulations, as that was the main focus of our project with Northrop 
Grumman.  By using Simulink, we can easily transmit our simulation to Northrop 
Grumman, who has a similar setup with which they can exploit onto their systems.  We 
can also vary the signals from realistic motor velocities to do-right impossible velocities. 
It was possible to add noise into the Matlab, but Northrop Grumman needed to be more 
focused on us exploring how various noises affected the systems and took the 
simulations at the baseline of being able to read the sine and cosine waves into position 
and velocity. 
 
To summarize what the goal of the encoder is, it is to give out data such that we can find 
the position, either the position itself or the velocity or arctan, which is just the position 
modded, so concerning time, we can find the position.  Each resolver encoder tries to 
achieve this using different mathematical properties.  We shall detail each one below 
and include screenshots of each encoder and the resolver model.  In the fall report, we 
stated we could not obtain specific libraries for Matlab or Simulink, we have since 
corrected this by getting the licensing from the school.  



The Simulink of the Resolver across both semesters: 

 
 
Figure 8: Screenshot of the simulink resolver we had in the fall.

 
Figure 9: Screenshot of the simulink resolver encoder we made by the end of the 
spring. 
 
As the figures above show, we have worked with Northrop Grumman to further develop 
a simulation of resolvers after the end of the fall semester.  The newer model has more 
outputs, allowing us to gauge the encoder's performance by comparing it to the 
simulations’ truths or signals we could see in real life.  The newer model also allows for 
more realistic resolver signals, as will be noted in future figures. 



The Simulations of Resolver Encoders across both semesters: 

 
Figure 10: Screenshot of the PLL simulink resolver encoder we had in the fall. 

 
Figure 11: Screenshot of the PLL simulink resolver encoder we made by the end of the 
spring. 



 
Figure 12: Screenshot of the third-order ration polynomial simulink resolver encoder we 
made by the end of the spring. 

 
Figure 13: Screenshot of the S-Transform simulink resolver encoder we made by the 
end of the spring. 
 
We have worked over the semester to develop resolver encoders further, as that was 
Northrop Grumman's primary goal for us.  The PLL uses PI control logic to adjust 
velocity with input and feedback. The significant change is to adjust the feedback by 
modding 2pi the feedback.   
 
The second encoder simulations use different math to achieve the goal of the encoder.  
The third-order ration polynomial tries to approximate the arctangent function with a 
polynomial of the third order.  After filtering them, it does this by comparing the cosine 
and sine signals and some curve fitting to achieve better results than the PLL. 



The last encoder uses Fourier and Inverse Fourier to realize an arctan.  The problem is, 
however, that the Fourier is extensively expensive on computation power and time, 
making the last encoder impractical compared to the first two.  

Full Apparatus Simulation of Both Semesters 

 
 
Figure 14: Screenshot of the fall simulation with the resolver and resolver encoder. 
 

 
Figure 15: Screenshot of the PLL simulation in the spring.  Note the Sample and Hold 
before the encoder.   



 
Figure 18: Screenshot of the full Third-Order Rational Polynomial simulation. 
 

 
Figure 17: Screenshot of the full S-Transform simulation in Simulink. 
 
As figures above show the simulation of change by their encoders, each using the same 
resolver simulation as a control.  The difference in the central part of the encoders is 
explored under the close-ups of the encoders in the previous section.  It should be 
noted that the PLL uses a sample and hold before feeding into the encoder, though the 
third-order ration polynomial does similar filtering of the education within its encoder.  It 
should be noted that the purple box is a scope to read the output signals, with some 
mux to overlay two signals in the same graph.  A trick that came out of our talks with 
Northrop Grumman.  



Output Performance of Simulations 

 
Figure 18: Screenshot of the simulation output in the fall when it is fed a tangent input.  
On the left is the output of the resolver, and on the right is the output of the encoder.  As 
you can see, we had some work ahead of us. 
 

 
Figure 19: Screenshot of the performance of the Spring’s PLL with high gains.  The top 
color of the legend is the expected signal, and the bottom is the result. 
 



 
Figure 20: Screenshot of the performance of the Spring’s PLL with moderate gains. The 
top color of the legend is the expected signal, and the bottom is the result. 
 

 
Figure 21: Screenshot of the Spring’s third-order rational polynomial performance. The 
top color of the legend is the expected signal, and the bottom is the result. 
 
As the figures above show, we have significantly improved performance.  The 
S-Transform requires too much time to process the signal, thus a lack of accurate 
results for that simulation.  Northrop Grumman had us explore ways to reduce 
oscillations in the positional signal seen toward the beginning of the simulation run.  The 
only way we have discovered, after exploring several options, to reduce these 
oscillations was to increase the frequency of them and thereby reduce the amplitude by 
increasing the integral gain of the encoder.  The difference can be seen in Figures 19 
and 20.  Lastly, in Figure 21, we show our best results which came from the third-order 



rational polynomial.  The third-order rational polynomial outputs arctangent of the 
position, which, if summed, would result in the position, but a sum of such caliber 
cannot be easily realized in Simulink, nor did it need to be.  The third-order polynomial 
follows the arctangent the best and does not result from massive gains.   

Recurrent Neural Network (RNN) 
As we approached the final stage of the semester, we aimed to further expand our 
project by implementing a Recurrent Neural Network (RNN). The motivation behind this 
step was the expectation that the RNN would outperform any Simulink MATLAB models 
regarding the accuracy and predictive capabilities. 
 
To facilitate this implementation, we turned to Google Colab, a robust data analysis and 
machine learning tool. Google Colab provides an environment where executable Python 
code can be combined with rich text, charts, images, HTML, and LaTex, all stored 
conveniently in Google Drive. This collaborative platform offered us the advantage of 
developing as a team with easy access to shared resources. 
 
One notable advantage of Google Colab is its access to GPUs (Graphics Processing 
Units), eliminating the need to transfer our project to a separate system for GPU 
utilization. This streamlined our workflow and allowed us to take full advantage of the 
computational power offered by GPUs, which is particularly beneficial for training 
complex neural networks. 
 
As we began utilizing Google Colab, we recognized the need to enhance our 
understanding of Neural Networks. Neural networks are machine learning algorithms 
that enable us to provide input data and their corresponding desired outputs, allowing 
the network to learn from these examples. This learning process empowers the RNN to 
generalize its knowledge and make accurate predictions when presented with new data. 
 
By implementing an RNN within Google Colab, we aimed to leverage the capabilities of 
this robust neural network architecture. The RNN's ability to retain information from 
previous inputs makes it suitable for sequential data, time series analysis, and tasks 
involving temporal dependencies. By training the RNN with appropriate datasets, we 
could achieve improved performance and accurate predictions for our project. 
 
Our project's final stage involved incorporating a Recurrent Neural Network (RNN) using 
Google Colab. This collaborative tool provided a unified data analysis and machine 
learning platform, enabling team development and easy access to shared resources. 
The RNN, a robust machine learning algorithm, allowed us to input data and desired 
outputs, and with training, it would provide accurate predictions for new data. By 
harnessing the capabilities of Google Colab and the RNN, we aimed to enhance the 
accuracy and performance of our project. 
 



Implementation of RNN 

The task at hand seemed straightforward initially: implementing an RNN based on the 
documentation we discovered from Keras. However, as is often the case with seemingly 
simple tasks, the execution proved to be more challenging than expected. To begin with 
any coding assignment, the first step is to import the necessary libraries. The image 
provided below displays the final list of imports we incorporated. As depicted, we utilized 
PyTorch, Keras, and Numpy to facilitate our implementation. 
 

 
Figure 22: Google Colab Import Section 
 
The import section in Google Colab is essential for setting up the required libraries and 
dependencies, ensuring effective code execution. It includes essential libraries like 
PyTorch, Keras, and Numpy, which are crucial for various aspects of our project. 
PyTorch provides functionalities for building and training neural networks, while Keras 
simplifies the development of neural network models with its high-level API. Numpy, on 
the other hand, enables efficient numerical operations on arrays and matrices. By 
incorporating these libraries, we ensure our code has the necessary resources to 
implement and train the Recurrent Neural Network (RNN). These libraries offer data 
manipulation, model creation, training, and evaluation functions. Overall, the import 
section lays the foundation for our project, enabling us to leverage the capabilities of 
these powerful libraries within the Google Colab environment. 
 
After setting up the necessary libraries, our next step involved loading the data required 
for our project. To accomplish this, we used Google Drive, which provided a convenient 



way to store and access our recorded Sin, Cos, and Velocity signals. Using Google 
Drive, we ensured our data was easily accessible and well-organized. 
 
In the figure below, we demonstrate how we loaded these three signals into our Google 
Colab environment, enabling us to perform further analysis and processing: 
 

 
Figure 23: Loading Data from Google Drive 
 
Loading signals from Google Drive provided seamless access to the Sin, Cos, and 
Velocity data, which is crucial for training and testing our RNN. Google Drive's 
centralized storage facilitated collaborative development and eliminated the need for 
manual data transfer or individual storage. Overall, Google Drive streamlined data 
loading, enabling easy access to our signals in Google Colab for analysis, processing, 
and RNN training. 
 
After successfully loading the data, the next crucial step was to process and shape the 
data to suit the requirements of the RNN model. The figure below visually depicts the 
data shaping process, often considered the most laborious part of model development. 
 
The process of shaping the data for the RNN model required meticulous attention to 
detail and careful consideration of the specific model's input requirements. It involved 
transforming the raw data into a suitable format that effectively captured the temporal 
nature of the problem. 



 
Figure 24: Shaping Data for RNN Model 
 
By shaping the data in accordance with the figure depicted above, we ensured that the 
RNN model could process the data correctly and make accurate predictions. This 
critical step paved the way for successful training, evaluation, and application of the 
RNN model to our problem domain. 
 
 

 
Figure 25: RNN Model Build 
 
Lastly, our focus shifted towards building the RNN model, encompassing several vital 
points. While constructing the model itself was relatively straightforward, the most 
challenging aspect lay in training the model effectively. During this process, we 
encountered a specific obstacle: incorporating different types of noise to enhance the 
model's ability to handle real-world disturbances, the exact nature of which remains 
unknown. 
 
Initially, our approach involved introducing various forms of noise during the training 
phase. The intention was to expose the model to various disturbances, thereby 
simulating real-life scenarios more accurately. However, despite correctly organizing 
and preparing the data, we needed help achieving the desired output, even after 
multiple attempts at reshaping the data and refining the training process. 



Our results did not align closely with the intended output. Due to our persistent 
challenges and the lack of progress in attaining the desired performance, we 
temporarily set aside this specific problem. Despite our diligent efforts, the outcome fell 
below our expectations. Nonetheless, we acknowledged the complexity and intricacy of 
the task, recognizing that further exploration and experimentation might be necessary to 
address this challenge effectively. 
 
By acknowledging the limitations and complexities associated with training the RNN 
model and recognizing the need for additional refinement, we remain open to revisiting 
this problem. This experience has provided valuable insights into the difficulties of 
achieving accurate predictions in real-world scenarios, emphasizing the importance of 
continuously improving and fine-tuning the training process to enhance model 
performance. 

Safety Issues 
Safety issues involved in this project include data safety and electrical safety when 
working with voltage. Northrop Grumman required our team to sign a non-disclosure 
agreement to work on this project. This is because most of their projects are directly 
related to working with the United States government. Therefore, data safety is 
something our team needs to be mindful of when sharing details of our project with 
others and in presentations. The other safety issue involves practicing electrical safety 
when working with our physical apparatus. We were working with a high-wattage motor 
and PWM, which both need voltage in order to get them to function correctly. 

Project Results 
We have completed our Simulink models as required by Northrop Grumman. This 
includes the PLL (phase-locked loop) resolver encoder algorithm, the Third-Order 
Rational Polynomial resolver encoder algorithm, and the S-Transform resolver encoder 
algorithm. We have presented these models to Northrop Grumman and received 
positive feedback, and completed our part of the project for them. There were a lot of 
challenges and lessons that we learned from this project, including learning to work with 
MATLAB Simulink, using MATLAB to alter and optimize algorithms, getting to 
understand brushless motors on a more technical level, learning how to create a neural 
network, and probably the most important, learning to work with a third party. Some 
standard design modules that could potentially be used for future projects are the 
physical model we produced for the project and the Simulink models. Our group's 
physical model for this project was already reused material from a previous senior 
design project to be reused in the future. The Simulink models are very complex and 
potentially reusable, but it may depend on the NDA that our group signed with Northrop 
Grumman on it being able to be reused in the future. If we continue working with 
Northrop Grumman, we could work on additional Simulink models for resolver encoder 
algorithms. Doing this could lead to the discovery of a better algorithm for the purposes 
that Northrop Grumman needs to be fulfilled.  



 
Another thing that we would like to continue working on is the development of the neural 
network. The neural network was not one of the goals given to us by Northrop 
Grumman, nor was it one of the goals set for our project by us, but it was something we 
wanted to test on the side. Because of this, there was not much time and effort put into 
it compared to what Northrop Grumman wanted from us, and it was primarily left 
unfinished. If we had more time for this project, the neural network could work better 
than a traditional Simulink algorithm, so it would be worth pursuing.  

Engineering Standards 
A few standards we defined are as follows: 
 
IEEE Recommended Practice for Motor Protection in Industrial and Commercial 
Power Systems.   
 

This protection describes the use of electric motors in industrial and commercial 
applications.  This covers dc motor protection with factors based on types of 
protection, low-voltage and medium-voltage protection, fixed speed, and an 
adjustable speed drive application.  IEEE 3004.8-2016 

 
High-Integrity System Modeling Guidelines.   
 

Provides model setting, block usage, and block parameter considerations for 
complete, unambiguous, robust, and verifiable models.  Complying with the 
DO-178C / DO-331, IEC 61508, IEC 62304, ISO 26262, or EN 50128 industry 
standards. 

 
MAB Guidelines.   
 

A guideline for basic rules of modeling with Simulink.  The purpose of this 
guideline is to allow for an easy and shared understanding of control systems.  
The objectives stated for this guideline are readability, simulation and verification, 
and code generation.  Model Advisor Checks for MAB and JMAAB Guidelines 
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Appendix 

Equipment Needed 

We have utilized various equipment and tools in our project to accomplish our 
objectives. We have used a brushless motor, a resolver, 3D printed pieces, a threaded 
rod, Arduino for PWM, a brushless ESC (Electronic Speed Controller), and two 
couplers. We also need an oscilloscope to take readings, a power supply, and waveform 
generator. These elements have played crucial roles in the functioning and operation of 
our physical system. 
 
Additionally, implementing MATLAB has been integral to the success of our project. 
Within MATLAB, we extensively relied on Simulink, a dynamic systems modeling and 
simulation tool, to design and simulate our system's behavior and performance. 
 
Furthermore, we received recommendations from Northrop Grumman during our 
project. They suggested employing several specific libraries and tools within MATLAB to 
enhance our work. One such tool is the "Fixed-Point Designer," which aids in 
developing and optimizing fixed-point systems. We also used the "Electronics and 
Mechatronics Sensors" library, which provides a range of sensor models for designing 
and testing electronic and mechatronic systems. 
 
Finally, we leveraged the capabilities of the "Foundation Library Mechanical Sensors" to 
incorporate various mechanical sensors into our system. This library offers a 
comprehensive set of pre-built sensor models, enabling us to simulate and evaluate the 
performance of our mechanical components accurately. 
 
Our project has relied on diverse equipment, including a brushless motor, resolver, 3D 
printed components, threaded rod, PWM, brushless ESC, and couplers. MATLAB and 
its Simulink platform have been essential for simulation and analysis. The 
recommendations from Northrop Grumman introduced us to valuable tools such as the 
"Fixed-Point Designer," "Electronics and Mechatronics Sensors," "Foundation Library 
Mechanical Sensors," and "HDL Coder," enabling us to enhance our project's 
performance and implementation. 

https://www.mathworks.com/help/simulink/gui/libraries.html
https://www.hindawi.com/journals/amse/2016/1497360/
https://ieeexplore.ieee.org/abstract/document/1185415
https://www.tensorflow.org/guide/keras/rnn
https://colab.research.google.com/


Budget 
Our group was given a budget of around $200. We didn’t need to spend that much extra 
money since we repurposed a previous senior design apparatus and motors. We were 
also provided with a brushless motor, resolver, brushless ESC, and Arduino. Therefore, 
the only cost we used on the physical apparatus was the two couplers to connect the 
resolver to the motor, the motor to the threaded rod, and a new resolver since the one 
we found from old senior designs didn’t work. Both couplers cost us around $25 
combined. The resolver used cost us $57. We also would need access to the MATLAB 
libraries stated in the “Equipment Needed” section, which would be hundreds of dollars 
over budget. In the end, these libraries were provided for free through the University, so 
no extra cost was generated there. 
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